MVR COLLEGE OF ENGINEERING AND TECHNOLOGY

COMPUTER PROGRAMMING
UNIT V

ENUMERATED, STRUCTURE AND UNION TYPES:
1. declaration, definition and initialization of structures,
2. accessing structures,
3. nested structures,
4. arrays of structures,
5. structures and functions,
6. pointers to structures,
7. self referential structures,
8. unions,
9. typedef, bit-fields
BIT-WISE OPERATORS: Logical, shift, rotation, masks.

Important Questions

Program on structures

C - Structures

C arrays allow you to define type of variables that can hold several data items of the same kind but structure is another user defined data type available in C programming, which allows you to combine data items of different kinds.

Structures are used to represent a record, Suppose you want to keep track of your books in a library. You might want to track the following attributes about each book:

· Title

· Author

· Subject

· Book ID

Defining a Structure
To define a structure, you must use the struct statement. The struct statement defines a new data type, with more than one member for your program. The format of the struct statement is this:

struct [structure tag]

{

 member definition;

 member definition;

 ...

 member definition;

} [one or more structure variables];
The structure tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the structure's definition, before the final semicolon, you can specify one or more structure variables but it is optional. Here is the way you would declare the Book structure:

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

} book;

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member access operator is coded as a period between the structure variable name and the structure member that we wish to access. You would use struct keyword to define variables of structure type. Following is the example to explain usage of structure:

#include <stdio.h>

#include <string.h>

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

int main()

{

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

 printf("Book 1 title : %s\n", Book1.title);

 printf("Book 1 author : %s\n", Book1.author);

 printf("Book 1 subject : %s\n", Book1.subject);

 printf("Book 1 book_id : %d\n", Book1.book_id);

 /* print Book2 info */

 printf("Book 2 title : %s\n", Book2.title);

 printf("Book 2 author : %s\n", Book2.author);

 printf("Book 2 subject : %s\n", Book2.subject);

 printf("Book 2 book_id : %d\n", Book2.book_id);

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700
Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass any other variable or pointer. You would access structure variables in the similar way as you have accessed in the above example:

#include <stdio.h>

#include <string.h>

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

/* function declaration */

void printBook(struct Books book);

int main()

{

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info */

 printBook(Book1);

 /* Print Book2 info */

 printBook(Book2);

 return 0;

}

void printBook(struct Books book)

{

 printf("Book title : %s\n", book.title);

 printf("Book author : %s\n", book.author);

 printf("Book subject : %s\n", book.subject);

 printf("Book book_id : %d\n", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in very similar way as you define pointer to any other variable as follows:

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above defined pointer variable. To find the address of a structure variable, place the & operator before the structure's name as follows:

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must use the -> operator as follows:

struct_pointer->title;

Let us re-write above example using structure pointer, hope this will be easy for you to understand the concept:

#include <stdio.h>

#include <string.h>

struct Books

{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

};

/* function declaration */

void printBook(struct Books *book);

int main()

{

 struct Books Book1; /* Declare Book1 of type Book */

 struct Books Book2; /* Declare Book2 of type Book */

 /* book 1 specification */

 strcpy(Book1.title, "C Programming");

 strcpy(Book1.author, "Nuha Ali");

 strcpy(Book1.subject, "C Programming Tutorial");

 Book1.book_id = 6495407;

 /* book 2 specification */

 strcpy(Book2.title, "Telecom Billing");

 strcpy(Book2.author, "Zara Ali");

 strcpy(Book2.subject, "Telecom Billing Tutorial");

 Book2.book_id = 6495700;

 /* print Book1 info by passing address of Book1 */

 printBook(&Book1);

 /* print Book2 info by passing address of Book2 */

 printBook(&Book2);

 return 0;

}

void printBook(struct Books *book)

{

 printf("Book title : %s\n", book->title);

 printf("Book author : %s\n", book->author);

 printf("Book subject : %s\n", book->subject);

 printf("Book book_id : %d\n", book->book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Self-Referential Structures:

we make structure struct NODE self-referential? declare a ‘pointer-to-struct NODE’ as a member of template struct NODE,

struct NODE {

 struct NODE *new; /* 'new' a pointer-to-struct NODE */

 int value;

 };

As compiler starts compiling the template struct NODE and reaches line

 struct NODE *new;

it finds ‘new’, a ‘pointer-to-struct NODE’, and also member of struct NODE template, it evaluates correctly how much bytes of storage to be allocated to ‘new’. On linux system, any pointer type takes 8 bytes of storage. There’s no problem in using ‘pointer-to-struct NODE’ as a member of struct NODE. Because ‘new’ is a ‘pointer-to-struct NODE’, structure struct NODE is called self-referential structure.

typedef struct NODE {

 struct NODE *new;

 int value;

 }Node;

int main(void)

{

 Node previous, current;

 /* accessing members of 'previous' */

 previous.new = ¤t;

 /* previous.new is a 'pointer-to-struct NODE' */

 previous.value = 100;

}

In above fragment of code, ‘previous.new’ is pointing to ‘current’ Node.

Self-referential structures have their applications in Advanced Data Structures like, Linked Lists, Binary Trees etc..
union

A union is a special data type available in C that enables you to store different data types in the same memory location. You can define a union with many members, but only one member can contain a value at any given time. Unions provide an efficient way of using the same memory location for multi-purpose.

Defining a Union

To define a union, you must use the union statement in very similar was as you did while defining structure. The union statement defines a new data type, with more than one member for your program. The format of the union statement is as follows:

union [union tag]
{
 member definition;
 member definition;
 ...
 member definition;
} [one or more union variables];
The union tag is optional and each member definition is a normal variable definition, such as int i; or float f; or any other valid variable definition. At the end of the union's definition, before the final semicolon, you can specify one or more union variables but it is optional. Here is the way you would define a union type named Data which has the three members i, f, and str:

union Data
{
 int i;
 float f;
 char str[20];
} data;
Now, a variable of Data type can store an integer, a floating-point number, or a string of characters. This means that a single variable ie. same memory location can be used to store multiple types of data. You can use any built-in or user defined data types inside a union based on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union. For example, in above example Data type will occupy 20 bytes of memory space because this is the maximum space which can be occupied by character string. Following is the example which will display total memory size occupied by the above union:

#include <stdio.h>
#include <string.h>
union Data
{
 int i;
 float f;
 char str[20];
};
int main()
{
 union Data data;

 printf("Memory size occupied by data : %d\n", sizeof(data));
 return 0;
}
When the above code is compiled and executed, it produces the following result:

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member access operator is coded as a period between the union variable name and the union member that we wish to access. You would use union keyword to define variables of union type. Following is the example to explain usage of union:

#include <stdio.h>
#include <string.h>
union Data
{
 int i;
 float f;
 char str[20];
};
int main()
{
 union Data data;

 data.i = 10;
 data.f = 220.5;
 strcpy(data.str, "C Programming");
 printf("data.i : %d\n", data.i);
 printf("data.f : %f\n", data.f);
 printf("data.str : %s\n", data.str);
 return 0;
}
When the above code is compiled and executed, it produces the following result:

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that values of i and f members of union got corrupted because final value assigned to the variable has occupied the memory location and this is the reason that the value if str member is getting printed very well. Now let's look into the same example once again where we will use one variable at a time which is the main purpose of having union:

#include <stdio.h>
#include <string.h>
union Data
{
 int i;
 float f;
 char str[20];
};
int main()
{
 union Data data;

 data.i = 10;
 printf("data.i : %d\n", data.i);
 data.f = 220.5;
 printf("data.f : %f\n", data.f);
 strcpy(data.str, "C Programming");
 printf("data.str : %s\n", data.str);
 return 0;
}
When the above code is compiled and executed, it produces the following result:

data.i : 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a time.

C - Bit Fields

Suppose your C program contains a number of TRUE/FALSE variables grouped in a structure called status, as follows:

struct

{

 unsigned int widthValidated;

 unsigned int heightValidated;

} status;

This structure requires 8 bytes of memory space but in actual we are going to store either 0 or 1 in each of the variables. The C programming language offers a better way to utilize the memory space in such situation. If you are using such variables inside a structure then you can define the width of a variable which tells the C compiler that you are going to use only those number of bytes. For example, above structure can be re-written as follows:

struct

{

 unsigned int widthValidated : 1;

 unsigned int heightValidated : 1;

} status;

Now, the above structure will require 4 bytes of memory space for status variable but only 2 bits will be used to store the values. If you will use up to 32 variables each one with a width of 1 bit , then also status structure will use 4 bytes, but as soon as you will have 33 variables, then it will allocate next slot of the memory and it will start using 8 bytes. Let us check the following example to understand the concept:

#include <stdio.h>

#include <string.h>

/* define simple structure */

struct

{

 unsigned int widthValidated;

 unsigned int heightValidated;

} status1;

/* define a structure with bit fields */

struct

{

 unsigned int widthValidated : 1;

 unsigned int heightValidated : 1;

} status2;

int main()

{

 printf("Memory size occupied by status1 : %d\n", sizeof(status1));

 printf("Memory size occupied by status2 : %d\n", sizeof(status2));

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Memory size occupied by status1 : 8

Memory size occupied by status2 : 4

Bit Field Declaration

The declaration of a bit-field has the form inside a structure:

struct

{

 type [member_name] : width ;

};

Below the description of variable elements of a bit field:

Elements
Description

type
An integer type that determines how the bit-field's value is interpreted. The type may be int, signed int, unsigned int.

member_name
The name of the bit-field.

width
The number of bits in the bit-field. The width must be less than or equal to the bit width of the specified type.

The variables defined with a predefined width are called bit fields. A bit field can hold more than a single bit for example if you need a variable to store a value from 0 to 7 only then you can define a bit field with a width of 3 bits as follows:

struct

{

 unsigned int age : 3;

} Age;

The above structure definition instructs C compiler that age variable is going to use only 3 bits to store the value, if you will try to use more than 3 bits then it will not allow you to do so. Let us try the following example:

#include <stdio.h>

#include <string.h>

struct

{

 unsigned int age : 3;

} Age;

int main()

{

 Age.age = 4;

 printf("Sizeof(Age) : %d\n", sizeof(Age));

 printf("Age.age : %d\n", Age.age);

 Age.age = 7;

 printf("Age.age : %d\n", Age.age);

 Age.age = 8;

 printf("Age.age : %d\n", Age.age);

 return 0;

}

When the above code is compiled it will compile with warning and when executed, it produces the following result:

Sizeof(Age) : 4

Age.age : 4

Age.age : 7

Age.age : 0

Bitwise Operators in C

The Bitwise operators supported by C language are listed in the following table. Assume variable A holds 60 and variable B holds 13, then:
	operator
	Description
	Example

	&
	Binary AND Operator copies a bit to the result if it exists in both operands.
	(A & B) will give 12 which is 0000 1100

	|
	Binary OR Operator copies a bit if it exists in either operand.
	(A | B) will give 61 which is 0011 1101

	^
	Binary XOR Operator copies the bit if it is set in one operand but not both.
	(A ^ B) will give 49 which is 0011 0001

	~
	Binary Ones Complement Operator is unary and has the effect of 'flipping' bits.
	(~A) will give -61 which is 1100 0011 in 2's complement form due to a signed binary number.

	<<
	Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.
	A << 2 will give 240 which is 1111 0000

	>>
	Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.
	A >> 2 will give 15 which is 0000 1111

Example

Try the following example to understand all the bitwise operators available in C programming language:

#include <stdio.h>

main()

{

 unsigned int a = 60;
/* 60 = 0011 1100 */

 unsigned int b = 13;
/* 13 = 0000 1101 */

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 printf("Line 1 - Value of c is %d\n", c);

 c = a | b; /* 61 = 0011 1101 */

 printf("Line 2 - Value of c is %d\n", c);

 c = a ^ b; /* 49 = 0011 0001 */

 printf("Line 3 - Value of c is %d\n", c);

 c = ~a; /*-61 = 1100 0011 */

 printf("Line 4 - Value of c is %d\n", c);

 c = a << 2; /* 240 = 1111 0000 */

 printf("Line 5 - Value of c is %d\n", c);

 c = a >> 2; /* 15 = 0000 1111 */

 printf("Line 6 - Value of c is %d\n", c);

}

When you compile and execute the above program it produces the following result:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Line 6 - Value of c is 15
124

